

Signing Web Forms with SetWeb Signer

and

Handling Electronic Signatures with PHP

Jonny Karlsson

Arcada Polytechnic
24.11.2005

GENERATING ELECTRONIC SIGNATURES WITH SETWEB

SIGNER

SetWeb Signer is a browser plug-in for generating electronic signatures. This plug-in is included
in the smartcard software Setec SetWeb (current version is 1.60). SetWeb Signer is actually an
ActiveX component which is embedded in a web page. The component is embedded in the
HTML/PHP-code using an <OBJECT>-tag. In the <OBJECT> tag, at least the parameters
described in Table 1 need to be defined.

Table 1. Object parameters for embedding the SetWeb Signer plug-in

NAME VALUE

TYPE Must be set to “text/x-text-to-sign”.

WSXAction URL of a web page where SetWeb Signer sends the result of the signing
operation (signed data).

WSXDataToSign The data to be signed. Can e.g. be a PHP post variable consisting of data
written in a HTML text area (<TEXTAREA>).

WSXBase64 Transport coding based on the Base 64 format. Can be set to “YES” or
“NO”

WSXFormat The format of the signature. Exemples:
- “PKCS7SIGNED_Attached”
- “PKCS7SIGNED_Detached”

“Attached” results in a signature containing the raw data.

“Detached” results in a signature containing only a mathematical extract of
the raw data.

WSXName The name of the variable containing the signature in URL-coded format.
This variable is accessible via the PHP Post-table in the source code of the
web-site to which the signature is posted to.

A special submit button, “WSXButton” is needed to enable the user to activate the SetWeb
Signer signing window. This button is embedded using with an <EMBED> tag within the
<OBJECT> tag. See the code example in figure 1.

 <OBJECT CLASSID="CLSID:8AC8A833-2F0F-11D5-845D-0050DA2DEE56" WIDTH="120" HEIGHT="35">
 <PARAM NAME="TYPE" VALUE="text/x-text-to-sign">
 <PARAM NAME="WSXAction" VALUE="https://hst2.arcada.fi/~testila/test2/verifiera_signatur.html">
 <PARAM NAME="WSXDataToSign" VALUE=” <?php echo $_POST[“varablename_of_textarea”]; ?>”>
 <PARAM NAME="WSXBase64" VALUE="YES">
 <PARAM NAME="WSXFormat" VALUE="PKCS7SIGNED_Attached">
 <PARAM NAME="WSXName" VALUE="signedData">

 <embed
 WIDTH="120" HEIGHT="35"
 WSXButtonName="Sign"
 </embed>
 </OBJECT>

Figure 1. Embedding SetWeb Signer in the HTML code.

HANDLING AND VERIFYING ELECTRONIC SIGNATURES

WITH PHP

The signatures generated with SetWeb Signer can be verified using the function
openssl_pkcs7_verify(). This function is a standard function in the PHP API in case PHP was
compiled with OpenSSL on the web server. The openssl_pkcs7_verify() function requires that
the signature information is in clear text and in S/MIME-format. Therefore, the signature
information generated by SetWeb Signer must be modified before the PHP-function is able to
verify the signature. The S/MIME format is reached by splitting the signature in rows consisting
of 64 characters each and adding the S/MIME header, see figure 2.

$signature = $_POST[“the_value_of_WSXName”];

$signature = chunk_split($signature, 64);
$signature = "MIME-Version: 1.0\nContent-Disposition: attachment;
filename=\"smime.p7m\"\nContent-Type: application/x-pkcs7-mime;
name=\"smime.p7m\"\nContent-Transfer-Encoding: base64\n\n".$signature;

Figure 2. Converting the signature information generated by SetWeb Signer to S/MIME format.

The function openssl_pkcs7_verify() is called by giving four parameters:
Param1 - Path to the file including the signature.
Param2 - A flag defining the type of the signature.
Param3 - Path to the file where the signature certificate will be stored.
Param4 - An array containing the paths to all trusted CA certificate files.

The verifying function requires that the signature to be verified is stored in a file. Therefore, the
signature information must be stored in a temporal file before calling the function. If the
signature is verified successfully openssl_pkcs7_verify() returns “true”, otherwise “false”. An
example of how a S/MIME signature can be verified is shown in figure 3.

$ca = array();
$ca[0] = “path to ca-file1”;
$ca[1] = “path to ca-file2”;
…

$sign_cert_file = “sign_cert_file”;
$tmpfile = “temp_sig_file”;
$handler = fopen($tmpfile, “w”);
fwrite($handler, “$signature”);
fclose($handler);

$status = openssl_pkcs7_verify($tmpfile, PKCS7_BINARY, $sign_cert_file, $ca);

Figure 3. Verifying a S/MIME signature in PHP

Identity information of the signer certificate can be examined for example by extracting the
subject field from the signer certificate. This can be done as shown in Figure 4. by using the PHP
functions file_get_contents() and openssl-x509_parse().

$cert = file_get_contents($sign_cert_file);
$ssl = openssl_x509_parse($cert);
$signerinfo = $ssl['name'];

Figure 4. Extracting the subject field from the signer certificate.

